
MIDI Basics

The word MIDI is an acronym.  It stands for Musical 
Instrument Digital Interface.  MIDI is the technology that 
allows electronic musical instruments to communicate with 
each other and with computers.  

MIDI is not a device; there is nothing that a person 
can put his hands on and say, "This is the MIDI." Nor does 
MIDI communicate music or sound in the manner that CD,s 
tape recorders, and phonographs do.  Strictly speaking 
MIDI is not even a language by which musical devices 
communicate although many people describe it that way.

MIDI is nothing more than a set of hardware and 
software specifications agreed upon by makers of electronic 
musical instruments and computers.  When implemented in 
the manufacture of these devices, MIDI allows them to 
communicate performance commands with other MIDI 
capable devices.  These performance commands are sent 
and received in the form of numeric codes.

1



Many modern musical devices use digital technology to create music: audio 
CD's, digital tape recorders, even synthesizers.  What makes MIDI different from these 
other technologies is that it uses numbers to represent commands to perform music 
rather than the sound itself.  This allows for an immense savings in the quantity of 
numbers necessary to make a sound.  A CD, for example,  represents a second's 
worth of musical tone with over 44,000 numbers whereas a MIDI instrument can 
represent a tone with only six-- three to turn the note on and three to turn it off.  This 
digital efficiency is the basis of MIDI's power and flexibility.

The MIDI specification was announced in 1983 at the winter NAMM show, and 
within a few years it gained such popularity that it became a required feature on any 
serious electronic musical instrument.  Now, a dozen years later, despite numerous 
additions and some revision, the fact that it is still classified as MIDI 1.0 validates the 
robustness of its original concept.

Several other factors also contribute to its continued acceptance even though 
much more powerful technologies could be created today.   One, from its inception it 
has been in the public domain; anyone can incorporate it into a commercial or non-
commercial product without paying a license fee.  Two, its technology is cheap; the 
specification calls for inexpensive, readily available hardware and easily implemented 
software.  Two organizations now control MIDI's standardization and continued 
development: the MMA (MIDI Manufacturer's Association) and the JMSC (Japanese 
MIDI Standards Committee).  Another organization, the IMA (International MIDI 
Association), oversees these groups and publishes the MIDI specifications.

2

144  60  127            128  60  64

MIDI's use of numbers to 
represent performance 
commands rather than the 
music itself makes it much 
more efficient.

0 55 78 121 247 186 289 312 408 512 400 327 250 133 86 49 1 -1 -58 -82 -130 -255 -190 -250 -311 -414 -504 - 411 -
338 -261 -142 -78 -53 0 55 78 121 247 186 289 312 408 512 400 327 250 133 86 49 1 -1 -58 -82 -130 -255 -190 -250 -
311 -414 -504 - 411 -338 -261 -142 -78 -53 0 55 78 121 247 186 289 312 408 512 400 327 250 133 86 49 1 -1 -58 -82 -
130 -255 -190 -250 -311 -414 -504 - 411 -338 -261 -142 -78 -53 0 55 78 121 247 186 289 312 408 512 400 327 250 133 
86 49 1 -1 -58 -82 -130 -255 -190 -250 -311 -414 -504 - 411 -338 -261 -142 -78 -53 0 55 78 121 247 186 289 312 408 
512 400 327 250 133 86 49 1 -1 -58 -82 -130 -255 -190 -250 -311 -414 -504 - 411 -338 -261 -142 -78 -53 0 55 78 121 
247 186 289 312 408 512 400 327 250 133 86 49 1 -1 -58 -82 -130 -255 -190 -250 -311 -414 -504 - 411 -338 -261 -142 
-78 -53 0 55 78 121 247 186 289 312 408 512 400 327 250 133 86 49 1 -1 -58 -82 -130 -255 -190 -250 -311 -414 -504 - 
411 -338 -261 -142 -78 -53 0 55 78 121 247 186 289 312 408 512 400 327 250 133 86 49 1 -1 -58 -82 -130 -255 -190 -
250 -311 -414 -504 - 411 -338 -261 -142 -78 -53 0 55 78 121 247 186 289 312 408 512 400 327 250 133 86 49 1 -1 -58 
-82 -130 -255 -190 -250 -311 -414 -504 - 411 -338 -261 -142 -78 -53 0 55 78 121 247 186 289 312 408 512 400 327 
250 133 86 49 1 -1 -58 -82 -130 -255 -190 -250 -311 -414 -504 - 411 -338 -261 -142 -78 -53 0 55 78 121 247 186 289 
312 408 512 400 327 250 133 86 49 1 -1 -58 -82 -130 -255 -190 -250 -

C D



Hardware Specifications

MIDI uses basic, off-the-shelf components.  To begin with, 
the specification calls for a physical connection between any two 
MIDI devices through a shielded, twisted pair cable terminated at 
both ends by a five pin male 180 degree DIN (Deutsche Industrie 
Normen) plug.  

The center pin  of the plug 
connects to the cable's shield and the 
two pins on either side of it connect to 
the two wires of the twisted pair.  The 
outer two pins are left unconnected. 

The cable between the two plugs can be any length under 50 feet.  Longer than 
this risks data corruption primarily from  electrical induction,  interference generated 
by adjacent electrical devices.  

One might well ask why standardize on a five pin plug if two pins are not used.  
The answer is that when the specification was proposed, five pin DIN plugs were less 
expensive and more readily available than other types-- an example of the philosophy 
that helped MIDI become so universal in such a short time.  

3

Vinyl
Insulation

Metal Foil
Shield

Twisted Pair
of Wires

Pins
12

3
45



The specification dictates that every MIDI capable device must have an input 
and/or an output port  to match the cable plugs, that is a five hole 180 degree DIN 
socket.  Most instruments have both IN and OUT, but some, designed only to receive 
or to transmit data, obviously need only one or the other.The IN port receives data 
from other connected devices, and the OUT port transmits data created within the 
device.  An optional socket called the THRU port simply retransmits data that comes 
into the IN port on to the next connected device.  

The THRU port theoretically allows any number of MIDI devices to be connected 
to the same bus in a configuration resembling, and often called, a daisy chain.

In any setup of multiple MIDI devices, the controlling instrument-- the one that 
the performer uses to initiate the MIDI data-- is named the master unit.  All those that 
receive the data are called slaves. 

  

4

THRUI N OUT

Incoming
Data

Outgoing
       Data

Duplicate
       Data

  
IN

  
  

 T
H

R
U

  
  

O
U

T  IN
     T

H
R

U
    O

U
T

Slave

  IN     THRU    OUT

  IN     THRU    OUT

Slave

Slave

Master



According to the spec, the IN port must be electrically separated from the rest of 
the instrument's electronics in order to prevent damage from possible incoming power 
surges.  This is accomplished by an opto-isolator just behind the IN port.   The opto-
isolator is simply a circuit containing a light emitting diode and a photo-electric 
transistor.   The diode turns on and off in response to the electrical pulses coming into 
the IN port.  This light then stimuates the photoelectric transistor which acts as an on/off  
gate to electrical flow in the rest of the instrument's circuitry.

Opto-isolators are a safe way to convey electrical pulses without direct electrical 
connection, but they tend to degrade the swiftness with which an electrical pulse 
changes from on to off or from off to on.  In a daisy chain of several MIDI devices this 
smoothing out of the binary signal, called ramping, becomes cumulatively more 
pronounced at each opto-isolator and so sets a practical limit to how many instruments 
can actually be hooked together in a chain of THRU port to IN port connections.

5

I N

THRU

Opto-isolator

to  UART circuit

Perfect on/off pulse

Pulse degraded through 
several opto-isolators

Unreadable pulse



Although the daisy chain provides the easiest way to hook up multiple MIDI 
instruments, a different configuration called a star network avoids the problem of 
cumulative data degradation.  In this arrangement the OUT port of the master unit is 
attached to a MIDI THRU box, a device which has one IN port and several THRU 
ports.  Each slave is then connected to one of the box's THRU ports.  This way each 
slave receives data that has passed through only one additional opto-isolator.

6

  IN     THRU    OUT

  IN
     T

H
R

U
    O

U
T

Slave Slave

Slave

  
IN

  
  

 T
H

R
U

  
  

O
U

T

  IN     THRU    OUT

Master

 THRU     THRU      THRU

 IN
Thru box



For the most flexible arrangement of numerous MIDI instruments a device 
known as a MIDI patch bay can be substituted for the THRU box.  This device 
contains both IN ports and THRU ports for every instrument and allows the user to 
switch select which one should be the master and which the slaves.   Some versions 
of this patch bay even allow for multiple masters at the same time; however, merging 
MIDI data without interlacing pulses from the data streams requires more intelligent 
circuitry.

7

  
IN

  
  

 T
H

R
U

  
  

O
U

T
  IN

     T
H

R
U

    O
U

T

  IN     THRU    OUT

  IN     THRU    OUT

  
IN

  
  

 T
H

R
U

  
  

O
U

T

  IN
     T

H
R

U
    O

U
T

 IN             IN             IN            IN            IN            IN

 THRU     THRU     THRU     THRU      THRU     THRU



In order to demonstrate IN, OUT, and THRU functions clearly, each of the 
previous set-up illustrations showed a layout only for real-time use-- one not able to 
record and play back MIDI data.  Inserting a computer into any of them  provides this 
capability but requires a little more information on how such a system functions.  The 
following diagram shows a basic daisy chain set-up employing a computer.

The MIDI interface acts as a translator between the computer and the rest of 
the system matching each side's data speed and voltage requirements to the other.  It 
usually connects to the computer through the serial port which allows two way flow of 
data over a single cable.  Notice that the interface has no THRU port.  This is because 
the OUT port normally serves that function when the computer is recording MIDI data.  
(Actually it allows the computer to read and retransmit the data as it records rather than 
simply  duplicating the data directly from the IN port as other MIDI devices do, but the 
basic function is the same.)  After data has been recorded and the computer is 
commanded to play it back, the OUT port serves its normal function.

Normally a master synth plays its own internal (local) sounds while 
simultaneously sending MIDI data.  However, when it is connected in a complete daisy 
chain loop like that shown above, it is better to turn local off.   If this is not done, each 
sound will be played twice, once locally and again through the MIDI chain.  Although 
the player will usually not hear a double note, it halves the number of voices available.

8

  IN     THRU    OUT

  IN     THRU    OUT

Slave

Master / Slave

 OUT

 IN        

MIDI 
Interface

  IN
     T

H
R

U
    O

U
T

Slave



Electrical Transmission

MIDI, like all digital technologies, works with binary numbers-- numbers 
represented by patterns of on or off electrical current.  In the case of MIDI, current "on" 
is defined as be 5 volts electrical pressure at 5 milliamperes flow and is represented 
by a zero.  Current "off" is, of course, no voltage and is represented by a 1.  This 
seemingly backwards arrangement--one representing off and zero representing on-- is 
common in digital electronics and is known as reverse logic.

MIDI devices send and receive the patterns at 31,250 bps (bits per second).  
The transmission is serial, that is all bits are transferred sequentially one after the 
other over a single line.  It is also asynchronous which means that the sending and 
receiving timers do not have to be stepping together beforehand in order to 
communicate correctly.  Again, the preference of serial asynchronous transmission 
over a faster parallel synchronous transmission and the choice of a relatively slow bps 
rate by today's standards reflect the desire by the early promoters of MIDI to keep its 
implementation as easy and inexpensive as possible.

The numeric codes that combine to represent MIDI performance commands are 
sent as eight bit bytes surrounded by a start bit of 0 and a stop bit of 1.  Thus a full bit 
set of any MIDI byte is actually ten bits.  (However, the start and stop bits are 
disregarded in discussing what information the MIDI byte is actually conveying.)   Start 
and stop bits are required in asynchronous data transmission.  The start bit serves as a 
signal for the receiving instrument to wake up and begin timing the incoming byte's 
pattern.  The stop bit signals that the byte is complete.  

(each tick represents 1/31250 second)

When the bits of a byte flow sequentially into the IN port and through the opto-
isolator, they are collected one by one at 1/31250 second intervals in a circuit known 
as the UART (universal asynchronous receiver-transmitter).   After the UART senses 
that it has captured all eight bits, it sends them together through a parallel bus to the 
microprocessor which compares the pattern to a library of recognized patterns and, if it 
finds a match, acts according to the stored directions. 

 

9

Start bit Stop bit
  0    1    0    0    1    0    0    0    0    1

Information

THRU

Opto-isolator

  1    0    0    1    0    0    0    0   

  UART

  (to microprocessor)



As you know, an eight bit byte can be arranged into only 256 unique 
combinations.  This number by itself would not permit a very large vocabulary of MIDI 
commands.  Fortunately, the MIDI specification interprets not just single bytes but 
groups of bytes as commands.  This multiplies the combinations, and the number of 
possible commands, exponentially.

To combine bytes meaningfully, MIDI actually starts by dividing the 256 
combinations into two sets of 128 combinations.  Those bytes which have an MSB of 1 
(bytes representing decimal numbers 128 - 256) are called status bytes; they  
convey the actual command.  Bytes with an MSB of 0 (bytes representing decimal 
numbers 0 to 127) are known as data bytes; they merely qualify or refine the 
command conveyed by the status byte.

       Data bytes         Status bytes

Any group of bytes that can be interpreted as a meaningful MIDI performance 
command is known as a MIDI message.  Every MIDI message must begin with a 
single status byte and may be followed by data bytes-- zero, one, two, or sometimes 
even thousands of them.  The most common messages are composed of a status byte 
and one or two data bytes.  A status byte and one data byte would yield 16,384  

10

01000000 01100000
01000001 01100001
01000010 01100010
01000011 01100011
01000100 01100100
01000101 01100101
01000110 01100110
01000111 01100111
01001000 01101000
01001001 01101001
01001010 01101010
01001011 01101011
01001100 01101100
01001101 01101101
01001110 01101110
01001111 01101111
01010000 01110000
01010001 01110001
01010010 01110010
01010011 01110011
01010100 01110100
01010101 01110101
01010110 01110110
01010111 01110111
01011000 01111000
01011001 01111001
01011010 01111010
01011011 01111011
01011100 01111100
01011101 01111101
01011110 01111110
01011111 01111111

00000000 00100000
00000001 00100001
00000010 00100010
00000011 00100011
00000100 00100100
00000101 00100101
00000110 00100110
00000111 00100111
00001000 00101000
00001001 00101001
00001010 00101010
00001011 00101011
00001100 00101100
00001101 00101101
00001110 00101110
00001111 00101111
00010000 00110000
00010001 00110001
00010010 00110010
00010011 00110011
00010100 00110100
00010101 00110101
00010110 00110110
00010111 00110111
00011000 00111000
00011001 00111001
00011010 00111010
00011011 00111011
00011100 00111100
00011101 00111101
00011110 00111110
00011111 00111111

10000000 10100000
10000001 10100001
10000010 10100010
10000011 10100011
10000100 10100100
10000101 10100101
10000110 10100110
10000111 10100111
10001000 10101000
10001001 10101001
10001010 10101010
10001011 10101011
10001100 10101100
10001101 10101101
10001110 10101110
10001111 10101111
10010000 10110000
10010001 10110001
10010010 10110010
10010011 10110011
10010100 10110100
10010101 10110101
10010110 10110110
10010111 10110111
10011000 10111000
10011001 10111001
10011010 10111010
10011011 10111011
10011100 10111100
10011101 10111101
10011110 10111110
10011111 10111111

11000000 11100000
11000001 11100001
11000010 11100010
11000011 11100011
11000100 11100100
11000101 11100101
11000110 11100110
11000111 11100111
11001000 11101000
11001001 11101001
11001010 11101010
11001011 11101011
11001100 11101100
11001101 11101101
11001110 11101110
11001111 11101111
11010000 11110000
11010001 11110001
11010010 11110010
11010011 11110011
11010100 11110100
11010101 11110101
11010110 11110110
11010111 11110111
11011000 11111000
11011001 11111001
11011010 11111010
11011011 11111011
11011100 11111100
11011101 11111101
11011110 11111110
11011111 11111111



commands, and a status byte and two data bytes would allow 2,097,152 commands.
Putting all of the above technical data together reveals some interesting data 

about how fast MIDI can communicate.   31,250 bps divided by the number of bits in a 
byte's full bit set (10) divided by  the typical number of bytes in a MIDI message (2 - 3) 
yields a normal communication speed of between 1000 and 1500 MIDI commands 
each second-- a lot of information by human standards!

Overview of the MIDI Language 

If we allow for some looseness of interpretation, it may be easiet to think of a 
MIDI message as a command translated from  a plain English sentence-- something 
like this: "Hey, channel one, turn on the note Middle C with your most forceful attack."  
In fact that command would look like the following in the MIDI language:

10010001  00111100  01111111

As in many foriegn languages, the syntax seems somewhat strange to our eyes; 
however, all of the important elements of intelligible communication are present.

In MIDI, the status byte always represents the main part of the command, the 
subject ("channel one") and the predicate  ("turn on the note").  The data bytes always 
represent qualifiers like adjectives, adverbs, prepositional phrases and the like.

We can categorize MIDI messages into two main classes: channel messages 
and system messages. 

 
A channel message is meant to be received and acted upon only by those 

instruments in a MIDI setup which have been set to the same ID number as the 
incoming message.  This is analogous to setting a television to receive the signal from 
only one channel even though signals from all channels are present in the cable.  A 
channel message can be distinguished by the three bits of a status byte which follow 
the MSB.  Of the eight possible combinations of these three bits, a channel message 
can be any of the following seven:

_000____ note off _100____  program change

_001____ note on _101____  channel pressure

_010____ poly pressure _110____  pitch bend

_011____ control change
 

11

Note on Channel 1 Middle C (note #60) most forceful attack 



Channel messages are often classified into two types: voice message and 
mode message.  Voice messages, which include all those shown above, tell a 
specific sound generating element of a synthesizer what to do (turn on, turn off, 
change timbre, etc.).  Mode messages, which are a subcategory of the control 
change message group above, tell a synthesizer how it should respond: 
monophonically, polyphonically, omni on (respond to data from all channels), or omni 
off (respond to data from a single channel).  

The LSN of these channel messages (__ __ __ __) indicates the number of 
the channel for which the information is meant.  These four bits can represent any one 
of sixteen channels, 0 to 15.

____0000 =   0 ____1000 =  8

____0001 =  1 ____1001 =  9

____0010 =  2 ____1010 = 10

____0011 =  3 ____1011 = 11

____0100 =  4 ____1100 = 12

____0101 =  5 ____1101 = 13

____0110 =  6 ____1110 = 14

____0111 =  7 ____1111 = 15

(Manufacturers often label these channels 1 - 16  rather than 0 - 15.)

A system message is meant to be received by all instruments in a MIDI setup.  
It is indicated by the eighth combination of the three bits following a status byte's MSB: 

_111____ =  system message

Since a system message is meant for all instruments, the sixteen possible 
combinations of the LSN obviously no longer need to indicate the channel number.  
Instead they show what type of system message is being transmitted.  These are 
arranged in the three categories shown on the following page:

12



System Exclusive messages:

____0000 =  manufacturer / universal sysex

System Common messages:

____0001 =  quarter frame

____0010 =  song position pointer

____0011 =  song select

____0100 =  (not yet defined)

____0101 =  (not yet defined)

____0110 =  tune request

____0111 =  end of exclusive

System Real Time Messages:

____1000 =  MIDI clock advance

____1001 =  (not yet defined)

____1010 =  start

____1011 =  continue

____1100 =  stop

____1101 =  (undefined)

____1110 =  active sensing

____1111 =  system reset

13



Details of the MIDI Language

Following, status byte by status byte, is a more detailed breakdown of MIDI's 
command vocabulary and syntax:

Channel messages:

Note Off, channels 0 - 15 (10000000 - 10001111)  

Note Off is a three byte message comprised of the note off status 
byte followed by a data byte representing which note and a data byte 
representing how fast the note was released:

10000000  00111100  01000000
 

The note number data byte can be any 
number  from 0 to 127 (00000000  to  
01111111) covering more than a ten octave 
scale from  C (8 Hz.) to G (12,543 Hz).  Middle 
C (261 Hz) is note number 60.

Although release velocity is meaning-
less on an acoustic keyboard, it can be set to 
control many effects on some MIDI synths.

Note On, channels 0 - 15 (10010000 - 10011111) 

Note On is a three byte message 
comprised of the note on status byte followed 
by a data byte representing which note and a 
data byte representing the velocity with which 
the note was struck:

10010000  00111100  01000000

The note number data byte can be any number  from 0 to 127 
(00000000  to  01111111) covering more than a ten octave scale from  C 
(8 Hz.) to G (12,543 Hz).  Middle C (261 Hz) is note number 60.

The third byte, the velocity data byte, represents the time required 
for a synth key to travel from its rest position to a fully depressed position 
allthough this can be reversed.  The fastest time assigns 127 to the byte 
which usually dictates a more accented sound.  If a note on message has 
a velocity of 0, it is interpreted as a note off message.  The least 
expensive MIDI synths often don't send or receive velocity data and play 
everything mezzo-forte.

14

Note off Channel 0 Middle C (#60) Medium release (64)

60

72

84

96

108

48

36

24

12

0

120
127

Note on Channel 0 Middle C (#60) Medium attack (64)

MIDI Note 
Numbers



Poly Pressure, channels 0 - 15 (10100000 - 10101111) 

Polyphonic  Pressure, sometimes called key aftertouch, is a 
three byte message comprised of the poly pressure status byte followed 
by a data byte representing the note being affected and a data byte 
representing current finger pressure on the key:

10100000  00111100  01000000

The note identity data byte can be any number from 0 to 127.  
Middle C is note number 60.  The pressure number data byte can also be 
any number between 0 and 127.

Poly pressure senses individual finger pressure changes and 
sends separate data for each  key held down on a synthesizer.  
Implementation is relatively expensive and as a result is included only on 
more expensive instruments.

Control Change, channels 0 - 15 (10110000 - 10111111) 

In effect, the Control Change message opens another entire 
sub-page of secondary  messages which allow more subtle control of a 
musical performance.   They also allow for creative expansion of the MIDI 
spec by manufacturers and experimenters because many of them are not 
yet defined and some can be implemented in any way the maker sees fit.  

Control change is a three byte message comprised of the control 
change status byte followed by a data byte representing which controller 
is being changed and another data byte representing the value of that 
change. 

10110000  00000111  01000000

The controller data byte (the second byte in the message) can be 
any number between 0 and 127.  These numbers represent the controls 
classified below.

  
0  to  31 = ContinuousCcontrollers (MSB),  A continuous 

controller represents any performance device that 
requires a wide, progressive range of settings like a 
volume pedal. or a fader.  MIDI specifies the 
following:

0 Bank select 
1 Mod wheel 
2 Breath controller
3 Undefined
4 Foot controller

15

Middle C (#60)Poly pr. Medium pressureChannel 0

Mezzo forte (64)Channel 0 Main volumeC.change



5 Portamento time
6 Data entry
7 Main volume
8 Balance
9 Undefined
10 Pan
11 Expression
12 Effect control #1
13 Effect control #2
14-15 Undefined
16 General purpose #1
17 General purpose #2
18 General purpose #3
19 General purpose #4
20-31 Undefined

32 to 63 = Continuous Controllers (LSB),  Because subtle 
performance nuances often require more than 
the128 steps of resolution that the third byte of a 
control change message would provide, the above 
continuous controllers are duplicated by the 
following LSB group.  The LSB controller divides 
each step of its equivalent MSB controller into 128 
smaller parts thus giving a complete resolution of 
16,384 steps (called 14 bit resolution).

32 Bank select 
33 Mod wheel 
34 Breath controller
35 Undefined
36 Foot controller
37 Portamento time
38 Data entry
39 Main volume
40 Balance
41 Undefined

64 - 69 = Switch Controllers,  Switch controllers represent 
performance devices that need only two settings: on 
and off.  This presents a potential interpretation 
problem to instrument manufacturers because the 
data byte used to represent the value of the control 

16

42 Pan
43 Expression
44 Effect control #1
45 Effect control #2
46-47 Undefined
48 General purpose #1
49 General purpose #2
50 General purpose #3
51 General purpose #4
52-63 Undefined



change (the third byte of the message) has 128 
settings.  Officially MIDI now recognizes any number 
from 64 to 127 as "on" and 0 - 63 as "off."  However, 
in order to remain compliant with older MIDI 
implementations, it is still recommended that 0 be 
used for "off" and 127 for "on."  The switch controlllers 
are:

64 Sustain
65 Portamento
66 Sustenuto
67 Soft pedal
68 Legato
69 Sustain 2

70 - 95 = Single Byte Continuous Controllers,  These 
are additional continuous controllers that do not 
require the14 bit resolution of controllers 1 - 63.  
They are:

70 Timbre variations
71 Harmonic intensity
72 Release time
73 Attack time
74-79 Undefined
80 General purpose #5
81 General purpose #6
82 General purpose #7
83 General purpose #8
84 Portamento note
85-90 Undefined
91 Effects depth #1 (usually External effects)
92 Effects depth #2 (usually Tremelo)
93 Effects depth #3 (usually Chorus)
94 Effects depth #4 (usually Detune)
95 Effects depth #5 (usually Phaser)

96 - 101 = Registered and Non-Registered Paramaters.  
These controllers in effect open a sub-sub-page of 
possible MIDI commands.  The MSB and LSB of the 
non-registered parameters give the manufacturer 
16,384 more numbers that he can assign to 
represent various functions of his synthesizer.  These 
can be anything the maker wants.  The registered 
parameters offer an equal number of possible 
controls; however they are reserved for future 

17



expansion by the MIDI associations.  Only five 
registered parameters are already assigned: Pitch 
Bend Sensitivity (LSB 00, MSB 00), Fine Tuning 
(LSB 01, MSB 00), Coarse Tuning (LSB 02, MSB 
00), Tuning Program (LSB 03, MSB 00), and 
Tuning Bank (LSB 04, MSB 00).

Once a parameter is selected, a value is 
attached to it by sending either the Data entry control 
change bytes (cc #6 for MSB and cc #38 for LSB) or 
the data increment/decrement  bytes (cc #96 and 
#97).  The controllers are:

96 Data increment
97 Data decrement
98 Non-registered parameter LSB
99 Non-registered parameter MSB
100 Registered parameter LSB
101 Registered parameter MSB

102 - 119 = Undefined Controllers.  More room for 
experimentation or future expansion.

120 - 127 = Mode Controllers.  While all other channel 
messages are designed to give performance 
commands to individual synthesizer voices, these 
last seven control change data bytes are intended for 
the synthesizer as a whole.  Each is explained 
below:

120 All sound off.  Forces all sound generators 
to quit .

121 Reset.  Re-initializes all controllers to their 
factory preset setting.

122 Local control.  Turns on or off a 
synthesizer's ability to play its own sound 
generators

123 All notes off.  A panic command which cuts 
off all sounds including stuck notes.

124 Omni off.  Directs each MIDI channel to 
respond to messages designated for any 
channel.

125 Omni on.  Directs each MIDI channel to 
respond only to messages designated for it.

126 Mono. Tells the synth to play one note 
at a time rather than notes simultaneously.

127 Poly.  Directs the synth to allow notes to play 

18



simultaneously.

Historically the meaningful combinations of 
the last four modes have been given  the 
following numeric designations:

Mode 1: Omni on, poly
Mode 2: Omni on, mono
Mode 3: Omni off, poly
Mode 4: Omni off mono

Program Change, channels 0 - 15 (11000000 - 11001111) 

Program Change is a two byte message comprised of the 
program change status byte followed by a single byte representing the 
number of the preset (pre-programmed timbre) that the performer 
wishes the channel to use.

11000000  00001000 

Note that this message does not actually change a timbre; it 
merely selects one of up to 128 available.  This number may seem 
limiting to some users because many synths now have more than 128 
timbres available in RAM at any one time.   Some synths allow the user to 
redirect program numbers (for example the user sets the synth to call up 
preset # 160 when it receives program change #10.  A newly added 
Control Change message (00) allows the user to select among multiple 
banks of presets.

Until recently there was no standardization of timbres-- preset #1 
on one synth might be a piano sound while on another it might be a 
whistle.  While this may not be a problem for the performer who uses the 
same set-up all the time, it presents a problem to those who want to 
exchange sequences or update equipment and still be assured that 
performances will sound essentially the same.  The problem has been 
magnified in the past few years by the wide variety of MIDI compatible 
sound cards used in multimedia computers. With the introduction of the 
General MIDI (GM) extension to the MIDI spec in 1993, the situation, 
while still not perfect, has been helped.

19

Channel 0 Preset #8P. change



The aspect of general MIDI that is pertinent to the program change 
message is that GM calls for standardized individual and group mapping 
of 128 timbres available through this message.  This means that  if preset  
number 1 sounds like a grand piano on one synthesizer, it will sound like 
a grand piano on another even if the tonal quality is somewhat different.  
Following is GM's recommended catalog of timbres and preset numbers:

In addition to mapping the above 127 presets, GM  specifies the 
following note numbers and percussion sounds in mapping the drum kit 
to the synth keyboard:

20

Keyboards:
1  Grand piano
2  Bright piano
3  Electric grand
4  Honky-tonk
5  Electric piano 1
6  Electric piano 2
7  Harpsichord
8  Clavichord

Keyboard 
Percussion:

9   Celesta
10 Glockenspeil
11 Music box
12 Vibrfaphone
13 Marimba
14 Xylophone
15 Tubular bells
16 Dulcimer

Organs:
17 Drawbar organ
18 Percussive organ
19 Rock organ
20 Church organ
21 Reed organ
22 Accordian
23 Harmonica
24 Tango accordian

Guitars:
25 Nylon guitar
26 Steell guitar
27 Electric jazz
28 Electric cllean
29 Mute guitar
30 Overdrive
31 Distortion
32 Harmonics

Basses:
33 Acoustic bass
34 Fingered bass
35 Pick bass
36 Fretless
37 Slap bass 1
38 Slap bass 2
39 Synth bass 1
40 Synth bass 2

Strings:
41 Violin
42 Viola
43 Cello
44 Contrabass
45 Tremolo
46 Pizzicato
47 Harp
48 Timpani

Ensembles:
49 String Ens. 1
50 String Ens. 2
51 Synth str. 1
52 Synth str. 2
53 Choir aahs
54 Choir oohs
55 Synth voice
56 Orchestra hit

Brass:
57 Trumpet
58 Trombone
59 Tuba
60 Mute tpt.
61 French horn
62 Brass section
63 Synth brass 1
64 Synth brass 2

Reeds:
65 Soprano sax
66 Alto sax
67 Tenor sax
68 Bari sax
69 Oboe
70 English horn
71 Bassoon
72 Clarinet

Pipes:
73 Piccolo
74 Flute
75 Recorder
76 Pan flute
77 Bottle
78 Shakuhachi
79 Whistle
80 Ocarina

Synth lead:
81 Square lead
82 Saw lead
83 Calliope
84 Chiff
85 Charang
86 Voice
87 Fifths
88 Bass & lead

Pad:
89 New age pad
90 Warm pad
91 Polysynth pad
92 Choir
93 Bowed pad
94 Metallic pad
95 Halo
96 Sweep

Synth effects:
97  Rain
98  Soundtrack
99  Crystal

100  Atmosphere
101  Brightness
102  Goblins
103  Echo
104  Sci-Fi 

Ethnic:
105  Sitar
106  Banjo
107  Shamisen
108  Koto
109  Kalimba
110  Bagpipe
111  Fiddle
112  Shanai

Percussion:
113  Tinkle bell
114  Agogo
115  Steel drum
116  Woodblock
117  Taiko drum
118  Melodic tom
119  Synth drum
120  Reverse cymbal

Sound effects:
121  Guitar fret noise
122  Breath noise
123  Seashore
124  Bird tweet
125  Telephone ring
126  Helicopter
127  Applause
128  Gunshot



Beyond these instrument mappings general MIDI gives several 
minimum hardware and software recommendations to manufacturers:

Untuned percussion use channel 10
All 16 MIDI channels supported

24 voice polyphony
Multitimbral operation with 16 simultaneous timbres

Dynamic voice allocation
Velocity sensitivity

Stereo output
Headphone output

Volume control
MIDI in port

Channel Pressure, channels 0 - 15 (11010000 - 11011111) 

Channel Pressure, sometimes called channel aftertouch, is 
a two byte message comprised of the channel pressure status byte 
followed by a data byte representing the current finger pressure on the 
entire keyboard:

11010000   01000000

The pressure number data byte can be any number between 0 
and 127.

Channel pressure is easier and less expensive to implement than 
polyphonic key pressure and as a result is found on many moderately 
priced synthesizers.  Because it requires only two bytes it is also more 
economical in the amount of communication time it requires. 

21

35  Acoustic bass dr.
36  Bass drum 1
37  Side stick
38  Acoustic snare
39  Hand clap
40  Electric snare
41  Low-floor tom
42  Closed hi-hat
43  High-floor tom
44  Pedal hi-hat
45  Low tom
46  Open hi-hat

47  Low-mid tom
48  High-mid tom
49  Crash cym 1
50  High tom
51  Ride cym 1
52  Chinese cym
53  Ride bell
54  Tamboutine
55  Splash cym
56  Cowbell
57  Crash cym 2
58  Vibraslap

59  Ride cym 2
60  High bongo
61  Low bongo
62  Mute hi conga
63  Open hi conga
64  Low conga
65  High timbale
66  Low timbale
67  High agogo
68  Low agogo
69  Cabasa
70  Maraca

71  Short whistle
72  Long whistle
73  Short guiro
74  Long guiro
75  Claves
76  High woodbl.
77  Low woodbl.
78  Mute cuica
79  Open cuica
80  Mute triangle
81  Open triangla  

Channel 0 Medium pressureCh. press.



Pitch Bend, channels 0 - 15 (11100000 - 11101111) 

Pitch Bend is a three byte message 
that consists of the pitch bend status byte 
followed by an LSB data byte and an MSB 
data byte specifying the current position of the 
synthesizer's pitch wheel. 

11100000   01000000   01000000

Because the position is specified with two bytes, it can be shown 
with 14 bit accuracy or 16,384 steps even though many instruments use 
a coarser resolution (ignoring the less significant bits).  The center 
detente, the central rest position, for pitch wheels is represented by the 
number 00000000  01000000 (8192) with higher or lower pitches 
represented by corespondingly higher or lower numbers.

 Pitch wheel data does not directly specify pitch.  The user can 
usually set the sensitivity of the tone generators to pitch wheel change.  
Thus a LSB/MSB combination of 16,384 might represent only a half-step 
above the normal pitch or it might represent a two octave change.

Even though MIDI is able to communicate over a thousand channel messages 
per second at 31,250 bps, there remains a danger that heavy data streams can 
overload its capacity leading to stuck notes and other glitches.  Pitch bend, aftertouch, 
and continuous controllers all send information at the rate of 50 to 100 messages per 
second.  Multiply that by several channels and it becomes apparent that it is indeed 
quite possible to exceed MIDI's bandwidth, that is, the number of bits per second it 
can carry.  Fortunately, MIDI employs a data compaction technique known as 
Running Status on channel messages to help alleviate this potential problem.  
Simply stated, Running Status means that once the status byte of a channel message 
is sent, it remains in effect until a different status byte is received.   (There is only one 
notable exception to this rule-- a MIDI clock status byte-- which will be discussed under 
system messages further on.)

Running Status saves the time required to retransmit the status byte for each 
similar event that sequentially follows.  This compaction method works best for fast, 
continuously variable events like pitch wheel change, aftertouch, and continuous 
control changes.  For singular events like program change and switch controllers it is 
not needed.  Running Status is not used for system messages.

22

Position LSBPitch b. Position MSBChannel 0



System Messages:

System Exclusive  (11110000) 

The System Exclusive (sysex) status byte is similar to the 
control change status byte in that it acts as a key to a sub-page of 
secondary messages which have many diverse functions.  These 
secondary messages are indicated by the data bytes that immediately 
follow the sysex status byte.

System exclusive is a variable length message comprised of a 
sysex status byte followed by any number of data bytes and terminated 
by an end-of-exclusive (EOX) status byte (11110111).

11110000  01000001  ....    ....    ....   ....   11110111

System exclusive messages are grouped into the following types 
identified by the second byte in the message:

0 to 124 Manufacturers messages.  Manufacturers 
messages are designed to communicate only with 
designated brands and models of MIDI equipment in 
a mixed instrument MIDI setup.  They can encode 
anything that the instrument maker wishes and that 
he will put in public domain.  They typically are used 
to change the timbre characteristics of a synth preset.  

From the inception of MIDI, the IMA  has 
assigned a unique single byte number between 1 
and 124 to each participating instrument maker.  The 
first MIDI manufacturer, Sequential Circuits, was 
number 01.  Some other early companies' ID's are: 
67 = Yamaha, 65 = Roland, 15 = Ensoniq, 17 = Apple 
Computer, etc.

When the MIDI regulating organizations 
realized that they would have to accomodate many 
more than 124 manufacturers, they began to use a 
three byte system for later participants.  The first byte 
for these newer makers is 00 with the following two 
bytes representing the LSB and MSB of a number 
between 0 and 16,384. 

A typical sysex message is shown below in its 
usual hexadecimal form.  This one directs an EMU 
Proteus 1 sound engine to create a grand piano 
sound as preset #1.

23

System exclusive Roland ID# Message  data bytes...... End of Exclusive



  

125 Universal noncommercial messages.  The 
MIDI associations have set aside this number to 
denote messages for experimentation and research. 

126 Universal non-real time messages.   These 
messages are used for communicating information 
that is not time critical to the entire MIDI setup.  After 
the 126 ID, a sub-ID byte follows to designate what 
type of information the message contains.  Some 
examples of its uses:

01 - 03 = Sample dump information
04 = MIDI time code
05 = Sample dump extensions
06 = General information
07 = Standard MIDI File dump
08 = MIDI tuning standard
09 = General MIDI on/off

127 Universal real time messages.   These 
messages are designed to relay information that is 
time critical to the entire MIDI setup.  After the 127 ID, 
a sub-ID byte follows to designate what type of 
information the message contains.  Some examples 
of its uses:

01 = MIDI time code
02 = MIDI Show Control

24

F0 18 04 00 01 00 00 41 00 63 00 6F 00 75 00 73
00 74 20 00 00 47 00 72 00 61 00 6E 00 64 00 7F
7F 7F 7F 7F 7F 00 00 00 00 00 00 00 00 7F 00 7F
00 7F 00 7F 00 01 00 00 00 00 00 00 00 69 00 00
00 00 00 00 00 7F 00 00 00 29 00 4D 00 00 00 12
7F 7F 00 7B 7F 00 00 00 00 7F 00 00 00 00 00 00
00 63 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 40 00 00 01 40 00 00 00 3C 00 00 00 00 00 00
00 01 00 3C 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 63 00 00 00 00 00 01 00 00 00 01 00 01
00 01 00 01 00 04 00 00 00 00 00 00 00 00 00 00
00 7F 00 40 00 40 00 40 00 40 00 40 00 00 00 01
00 07 00 02 00 05 00 06 00 08 00 09 00 01 00 11
00 01 00 00 00 00 00 00 00 00 00 00 00 01 00 00
00 00 00 20 00 7F 00 7F 00 7F 00 0C 00 0D 00 05
00 BC 00 00 00 00 00 1D F7



03 = Notation
04 = Device control
05 = Real time cueing
06 = MIDI machine control commands
07 = MIDI machine control responses
08 = MIDI tuning

System Common  Quarter Frame (11110001)

The Quarter  Frame message was added to the MIDI specification 
in 1987 to allow the transmission of absolute time information through 
MIDI.   Absolute time refers to the timing of events in hours, minutes, 
seconds, and parts of a second called frames after a given starting 
point.  Described simply, a frame usually equals a 30th of a second 
although this varies for different uses.

Absolute time differs from the metronomic timing common in 
music.  Metronomic or Relative time refers to the placement of events 
in tempo dependent units of measures, beats, and sub-beats after a 
given starting point.  Absolute time is also called SMPTE time after the 
Society of Motion Picture and Television Engineers that adopted it as a 
standard in 1970.   SMPTE time is usually shown in the following form: 

00:00:00:00

The difference between relative time and absolute or SMPTE time 
should be apparent from the following example:

25

MM = 60

This note occurs on the second half of the 
seventh beat or in absolute time 00:00:06:15

MM = 120

The note still occurs on the second half of the 
seventh beat but in absolute time  it is now at 
approximately 00:00:03:07.

Hours Minutes Seconds Frames



The Quarter Frame message is 
actually one part of the MIDI Time 
Code extension adopted by the MMA 
as a method of communicating SMPTE 
time through MIDI.  MTC's main 
purpose is to allow accurate 
synchronization of MIDI events with 
other events on video and audio tape or 
film.   Many film and video producers 
now regularly use it to cue sound 
effects from a sampler.

Quarter Frame is a 2 byte message comprised of the quarter frame 
status byte followed by a single data byte whose MSN defines its 
function and whose LSN conveys the function's data. 

11110001  00010001
  

Of course, it is impossible to convey a full rendition of SMPTE time 
code in a single data byte with only 128 combinations.  (24 hours X 60 
minutes X 60 seconds X 30 frames requires 2,592,000 combinations.)  
Therefore, a group of 8 sequential quarter frame messages is used to 
convey a full rendition of SMPTE time as in the following example:

11110001  00000000 = frame LSN
11110001  00010000 = frame MSN
11110001  00100000 = second LSN
11110001  00110000 = second MSN
11110001  01000000 = minute LSN
11110001  01010000 = minute MSN
11110001  01100000 = hour LSN
11110001  01110110 = hour MSN & type of SMPTE

The complete message above reads:

00:00:00:00 (at 30fps/non drop frame)

26

Hours Minutes Seconds Frames Type of SMPTE code

Quarter frame Frame MSN Frame 16



To interpret the number of hours, minutes, seconds, or frames 
encoded in the data bytes of the message group above, the receiving 
device combines the least significant four bits of the appropriate LSN 
byte with the least significant bit (for frames and hours) or two bits (for 
minutes and seconds) of the appropriate MSN byte.  Here is another 
example:

11110001  00000011 = frame LSN   
11110001  00010001 = frame MSN    1 0011 (19)
11110001  00101111 = second LSN
11110001  00110010 = second MSN 10 1111 (47)
11110001  01000101 = minute LSN   
11110001  01010001 = minute MSN 00 0111 (07)
11110001  01100100 = hour LSN   
11110001  01110110 = hr MSN & SMPTE type 110 0100 (04)

04:07:47:19 (at 30fps/non drop frame)

A total of six bits (LSN and 2 bits of MSN) are needed to encode 
minute and second information because those temporal units require 60 
unique numbers.  Frames and hours, which require only 30 and 24 
unique numbers apiece can be encoded in only 5 total bits.  Six bit and 
five bit encoding still leaves several bits of the combined LSN and MSN 
nibbles unused.  For frames, seconds, and minutes, these unused bits 
are reserved for future expansion.  For hours, two of them are assigned to 
encode the kind of SMPTE being used.

SMPTE time coding actually incorporates four different methods of 
dividing seconds into frames.  These methods are based on the frame 
rates of motion picture film (24 fps), European PAL television (25 fps), 
American NTSC black & white television (30 fps), and American NTSC 
Color television (30 fps drop frame or an average of 29.97 fps).   In MIDI 
time code the selection of method is coded in bits 2 and 3 of the hour 
MSN data byte according to the following standard:

_00_   = 24 fps
_01_   = 25 fps  
_10_   = 30 fps drop frame
_11_  = 30 fps

27

Hours Minutes Seconds Frames Type of SMPTE code



System Common - Song Position Pointer  (11110010)

Song position pointer is a three byte message comprised of the 
song position pointer status byte followed by a data byte representing the 
LSB of a location in a song and a data byte representing the MSB of the 
location.

11110010  00000000  01000000

The pointer is really just a counter that increments one number for 
every MIDI Beat from the beginning of a song.  A MIDI Beat is defined 
as six MIDI Clocks.   A MIDI Clock is a single byte system real time 
message that a sending device transmits regularly like a metronome at 
the rate of 24 per quarter note.    A MIDI Beat therefore equals a sixteenth 
note.

The combination of LSB and MSB allows MIDI to pinpoint any one 
of 16,384 positions in a song with a quarter of a beat (sixteenth note) 
accuracy.

System Common - Song Select  (11110011)

Song select is a two byte message comprised of the song select 
status byte followed by a data byte representing the number of the song 
or pattern desired.

11110011   00000001

This can be an effective message in selecting patterns from a 
drum machine or in chaining multiple sequences together.  Note that it 
only selects a song or pattern; it does not play it.  To start the song or 
pattern playing requires the system real time start or continue message 
discussed later.

28

Song Position Pointer LSB = 0 MIDI beats MSB = 8192  MIDI beats

Song select Song number 1

Quarter note = 24
Dotted eighth = 18
Triplet quarter = 16
Eighth note = 12
Dotted 16th =   9
Triplet eighth =   8
Sixteenth note =   6
Triplet sixteenth =   4
32 nd note =   3
Triplet 32nd =   2



System Common - undefined   (11110100)

This unused  status byte allows for future expansion of the MIDI 
spec.

System Common - undefined   (11110101)

This unused  status byte allows for future expansion of the MIDI 
spec.

System Common - Tune Request   (11110110)

Tune request is a single byte message that tells any analog 
synthesizers in the setup to retune their tone generators.  Since newer 
synthesizers are now almost exclusively digital and don't require periodic 
retuning, this message has become superfluous.

System Common - End of Exclusive   (11110111)

The End of Exclusive (EOX) status byte is not used as a 
message by itself but rather as a caboose on a long train of system 
exclusive data bytes.  Its function is to tell the receiving unit that the 
system exclusive information is complete and that the next byte will be 
the start of a new message.

System Real Time - MIDI Clock    (11111000)

MIDI Clock is a single byte message designed to tell a receiving 
sequencer to step ahead by 1/24th of a quarter note.  It is useful for 
synchronizing two or more sequencers to the same metronomic pulse.  
Because of its time critical nature the MIDI Clock message takes priority 
over other messages on the MIDI bus.  This means that it is sent and 
received at exact, regular intervals even if this requires that it be inserted 
in the middle of another message.

 

System Real Time - Undefined   (11111001)

This unused  status byte allows for future expansion of the MIDI 
spec.

29



System Real Time - Start    (111111010)

Start is a single byte message designed to command a receiving 
sequencer to move to the beginning of a song.  The next MIDI Clock 
message then begins playing the song.

System Real Time - Continue    (111111011)

Continue is a single byte message designed to signal a paused 
sequencer that it is about to begin at the point it stopped.  The next MIDI 
clock then begins stepping through the song at that point.

System Real Time - Stop    (111111100)

Stop is a single byte message which forces all receiving 
sequencers to immediatelly stop and to store their beat positions.

SystemReal Time - Undefined   (11111101)

This unused  status byte allows for future expansion of the MIDI 
spec.

System Real Time - Active Sensing    (111111110)

Active Sensing is an optional single byte message that was 
designed to be sent throughout a MIDI setup at intervals of less than 300 
milliseconds to insure against unexpected bus failures.  After sensing the 
first active sensing message any MIDI units that respond to it expect to 
receive at intervals of no more than 300 milliseconds.  If they do not 
sense the message within that time, they shut down all oscillators 
immediately.  The main benefit of this message is for avoiding stuck 
notes if someone trips over a MIDI cable and disconnects the system 
between a note on and a note off message.

System Real Time - System Reset    (111111111)

System  Reset is a single byte message that reinitializes all 
receiving units.  This means that it immediately shuts off all voices, stops 
any moving sequences, forces the sequencers to the beginning position, 
switches the units to local on, switches to omni on, poly mode, and clears 
any status bytes out of running status.  It is the ultimate panic button in 
MIDI and should not be used very often.

30



A Summary of All MIDI Bytes and What They Mean

Data Bytes (MSB = 0)

00000000 - 01111111 Refines/qualifies Status Byte commands

Status Bytes (MSB = 1)

Channel Messages: (xxxx tells channel number)
(Includes Voice messages and 8 Mode messages)

1000xxxx Note Off
1001xxxx Note On
1010xxxx Poly Pressure
1011xxxx Control Change
1100xxxx Program Change
1101xxxx Channel Pressure
1110xxxx Pitch Bend

System Messages:

System Exclusive:
11110000 System Exclusive

System Common:
11110001 Quarter Frame
11110010 Song Position Pointer
11110011 Song Select
11110100 undefined
11110101 undefined
11110110 Tune Request
11110111 End of Exclusive

System Real Time:
11111000 MIDI Clock
11111001 undefined
11111010 Start
11111011 Continue
11111100 Stop
11111101 undefined
11111110 Active Sensing
11111111 System Reset

31

0 - 31 = Two Byte Continuous Controllers (MSB)
32 - 63 = Two Byte Continuous Controllers (LSB)
64 - 69 = Switch Controllers
70 - 95 = One Byte Continuous Controllers
96 - 101 = Registered & Non-Registered Parameters
102 - 119 = undefined
120 - 127 = Mode Controllers

0 - 124 = Manufacturers Messages
125 = Universal Non-Commercial Messages
126 = Universal Non-Real Time Messages
127 = Universal Real Time Messages


