
Interpreting a Standard MIDI File
by Dave Sebald

In the infant days of MIDI (the early ‘80s) every sequencer on the market saved files in its own
proprietary format. The reason for this was probably just marketing. Each company could claim that the
unique benefits of its sequencer-- its superior resolution, its ability to save lyrics, etc-- made it a better
choice than competing products.

It wasn’t long, however, before these companies began to realize that file transportability itself was
a benefit. Musicians who used computers were beginning to demand features like an easy means for
moving music created on a sequencer to a notation program for print-out or for moving algorithmically
composed files to a sequencer. Also In their search for improved interfaces many users were beginning to
jump from one sequencer to another or even from one platform to another only to find that none of their
previous work could be brought into the new environment.

Smelling potential profits from answering this need, software companies were faced with several
options. They could: 1) create a full suite of programs for every environment, 2) create translators for
every competing products’ formats, or 3) add some means for exporting files in a single common format
that could then be imported by any other MIDI software. The third option was obviously the cheapest so in
July, 1988, members of the MIDI Manufacturers Association agreed to adopt an addition to the MIDI 1.0
specification called the Standard MIDI File format. Although it took a few years to catch on, today
almost every sequencer, notation program, algorithmic composer, or other arcane piece of MIDI software
allows the user to save and load in SMF format in addition to its own “still-the-best” proprietary format. The
recent explosive growth of multimedia and world wide information exchange through the Internet has
confirmed the wisdom of that decision.

At its most basic level, the function of any proprietary sequencer file is to store MIDI performance
commands in the right order and in the right rhythm. Simply put, standard MIDI files represent a lowest-
common-denominator method of doing that for all sequencers. Well, o.k., they’re not quite that simplistic;
in fact it’s surprising for many people to see the amount of information that they actually can convey.
Along with basic time stamped MIDI messages, SMFs can save what are called “meta-events.” These
include data which show tempo, time signature, key signature, mode (major/minor), track names, lyrics,
copyright information, structural markers, event cues, and even manufacturer-specific details.

What if your sequencer didn’t include one of these fetures? Because of its universal nature, the
SMF format had to be designed for maximum flexibility . This means that the specification permits MIDI
software that can’t deal with one or more aspects of the above information to simply ignore it.

It is important to emphasize that MIDI software products do not use SMFs directly. That means
they do not deal with standard MIDI files in real time but rather translate them into their own proprietary
formats before use. In part this is because SMFs use compression algorithms whose real-time expansion
could slow the internal workings of the application and create timing errors.

The following analysis of a very simple standard MIDI
file can be interesting not only because it describes the exact
meaning of every part of a typical file, but because it gives
some insight into how computers and humans differ in
processing information in general. To create the file I used
Opcode’s Musicshop in step-entry mode. For clarity’s sake I
wanted to enter some repetitive data that would be easy to
spot in the exported file. I set up the step-entry mode to enter
quarter notes in 4/4 meter with each note being exactly the
same length, 432/480’s of a beat. (Musicshop divides every
beat into 480 parts.)

I then entered this
sequence of notes...

...saved it in standard MIDI file format...

...and opened it again in a program that displays files in their natural numeric format.

Here is what a sequencer actually “sees” in this .mid file-- not really numbers, just pulses of on or
off current at precisely timed intervals. (Dashes = 5 volts (high) or 0 volts (low). Dots = bits or time units:

But it’s easier for humans to think of the above “ons” and “offs” as numbers. Here it is in binary.
Using reverse logic 1 = off, 0 = on:

1010011010101010100010110100001011001000100000000010
0000000010000000001000001100100000000010000000101000
0000001000000100100000001011110000001010011010101010
1000101110010010110101101000000000100000000010000000
0010010001101000000000111111111010101010001000001010
1011000000100000000010000000001000000000100000000010
0000000011111111101010100010100000011010000011101101
0000101001000000100000000011111111101010110000100000
1000100000100010000001001000110000100001000010000000
0011111111101010110010100000010010000000001000000000
1101111000100000000011111111101001011110100000000010
1001101010101010001011100100101101011010000000001000
0000001000000000100101001010000000001100100000100111
1000101000000011000001101001100000110000000010011110
0010100000001001100000110010000010011110001010000000
1100000110100110000011000000001001111000101000000010
0110000011001000001001111000101000000011000001101001
1000001100000000100111100010100000001001100000110010
0000100111100010100000001100000110100110000011000000
0010011110001010000000110101101010011000001111111110
10010111101000000000

It’s also easier for humans to group the binary number into bytes (10 bits including start bit and
stop bit):

1010011010 1010101000 1011010000 1011001000 1000000000 1000000000
1000000000 1000001100 1000000000 1000000010 1000000000 1000000100
1000000010 1111000000 1010011010 1010101000 1011100100 1011010110
1000000000 1000000000 1000000000 1001000110 1000000000 1111111110
1010101000 1000001010 1011000000 1000000000 1000000000 1000000000
1000000000 1000000000 1111111110 1010100010 1000000110 1000001110
1101000010 1001000000 1000000000 1111111110 1010110000 1000001000
1000001000 1000000100 1000110000 1000010000 1000000000 1111111110
1010110010 1000000100 1000000000 1000000000 1101111000 1000000000
1111111110 1001011110 1000000000 1010011010 1010101000 1011100100
1011010110 1000000000 1000000000 1000000000 1001010010 1000000000
1100100000 1001111000 1010000000 1100000110 1001100000 1100000000
1001111000 1010000000 1001100000 1100100000 1001111000 1010000000
1100000110 1001100000 1100000000 1001111000 1010000000 1001100000
1100100000 1001111000 1010000000 1100000110 1001100000 1100000000
1001111000 1010000000 1001100000 1100100000 1001111000 1010000000
1100000110 1001100000 1100000000 1001111000 1010000000 1101011010
1001100000 1111111110 1001011110 1000000000

And it’s easier to interpret these bytes if we strip off the start bit and stop bit from each one:

01001101 01010100 01101000 01100100 00000000 00000000
00000000 00000110 00000000 00000001 00000000 00000010
00000001 11100000 01001101 01010100 01110010 01101011
00000000 00000000 00000000 00100011 00000000 11111111
01010100 00000101 01100000 00000000 00000000 00000000
00000000 00000000 11111111 01010001 00000011 00000111
10100001 00100000 00000000 11111111 01011000 00000100
00000100 00000010 00011000 00001000 00000000 11111111
01011001 00000010 00000000 00000000 10111100 00000000
11111111 00101111 00000000 01001101 01010100 01110010
01101011 00000000 00000000 00000000 00101001 00000000
10010000 00111100 01000000 10000011 00110000 10000000
00111100 01000000 00110000 10010000 00111100 01000000
10000011 00110000 10000000 00111100 01000000 00110000
10010000 00111100 01000000 10000011 00110000 10000000
00111100 01000000 00110000 10010000 00111100 01000000
10000011 00110000 10000000 00111100 01000000 10101101
00110000 11111111 00101111 00000000

Real computer geeks often find it easier to represent binary numeration in hexidecimal, each digit
representing a nibble.

4D 54 68 64 00 00
00 06 00 01 00 02
01 E0 4D 54 72 6B
00 00 00 23 00 FF
54 05 60 00 00 00
00 00 FF 51 03 07
A1 20 00 FF 58 04
04 02 18 08 00 FF
59 02 00 00 BC 00
FF 2F 00 4D 54 72
6B 00 00 00 29 00
90 3C 40 83 30 80
3C 40 30 90 3C 40
83 30 80 3C 40 30
90 3C 40 83 30 80
3C 40 30 90 3C 40
83 30 80 3C 40 AD
30 FF 2F 00

Returning to binary, we lay out the numbers vertically to permit clearly visible grouping (with lines)
and allow room for interpreting these groups according to the MIDI specification.

01001101 (M)
01010100 (T)
01101000 (h)
01100100 (d)
00000000
00000000
00000000
00000110
00000000
00000001
00000000
00000010
00000001
11100000
01001101 (M)
01010100 (T)
01110010 (r)
01101011 (k)
00000000
00000000
00000000
00100011
00000000
11111111
01010100
00000101
01100000
00000000
00000000
00000000
00000000
00000000
11111111
01010001
00000011
00000111
10100001
00100000
00000000
11111111
01011000
00000100
00000100
00000010
00011000
00001000
00000000
11111111
01011001
00000010
00000000
00000000
10111100

00000000
11111111
00101111
00000000
01001101 (M)
01010100 (T)
01110010 (r)
01101011 (k)
00000000
00000000
00000000
00101001
00000000
10010000
00111100
01000000
10000011
00110000
10000000
00111100
01000000
00110000
10010000
00111100
01000000
10000011
00110000
10000000
00111100
01000000
00110000
10010000
00111100
01000000
10000011
00110000
10000000
00111100
01000000
00110000
10010000
00111100
01000000
10000011
00110000
10000000
00111100
01000000
10101101
00110000
11111111
00101111
00000000

ASCII numbers for "MThd"
identify this file as a SMF.
Header information tells the
sequencer how to interpret
the following tracks.

Length of this header
chunk in 4 bytes

Format type
(Type 1 = multitrack)

Number of tracks in this file.

Relative timing shown by MSN (0000)
480 ticks/beat (0001 11100000)

ASCII numbers for "MTrk”
identify the first track.
This track is for Meta-
commands, not MIDI data.

Length of the first track
chunk in 4 bytes

Separator?

SMPTE offset
command (first 3
bytes) in
hours,
minutes,
seconds,
frames,
and subframes.

Separator?

Separator?

Tempo setting
command (first
3 bytes) in
microseconds
(last 3 bytes)

Meter signature
command
(first 3 bytes).
Numerator of time sign
Denominator of time sign
Clocks per beat
32nd notes per beat
Separator?

Key signature
command (first 3
bytes)
No b’s or #’s
Major mode
?

Separator?

End of track
command (3 bytes)

ASCII numbers for "MTrk”
identify the second track,
which is actually the first
track of MIDI data.

Length of the second
track chunk in 4 bytes

At the beginning (00000000)
Turn on a note on channel 0 (144)
The note is middle C (60)
struck mezzo-forte (64)

After 432 ticks (1 - 4 bytes)

Turn off a note on channel 0 (140)
The note is middle C (60)
released with mezzo-forte speed (64)
After 48 ticks (1 - 4 bytes)

Turn on a note on channel 0
The note is middle C
struck mezzo-forte

After 432 ticks (1 - 4 bytes)

Turn off a note on channel 0 (140)
The note is middle C (60)
released with mezzo-forte speed (64)
After 48 ticks (1 - 4 bytes)
Turn on a note on channel 0
The note is middle C
struck mezzo-forte

After 432 ticks (1 - 4 bytes)

Turn off a note on channel 0 (140)
The note is middle C (60)
released with mezzo-forte speed (64)
After 48 ticks (1 - 4 bytes)
Turn on a note on channel 0
The note is middle C
struck mezzo-forte

After 432 ticks (1 - 4 bytes)

Turn off a note on channel 0 (140)
The note is middle C (60)
released with mezzo-forte speed (64)

End of track
command (3 Bytes)

After 5808 ticks (1-4 bytes)

C
H
U
N
K

1

C
H
U
N
K

2

C
H
U
N
K

3

